In vitro metabolism of exemestane by hepatic cytochrome P450s: impact of nonsynonymous polymorphisms on formation of the active metabolite 17β‐dihydroexemestane
نویسندگان
چکیده
Exemestane (EXE) is an endocrine therapy commonly used by postmenopausal women with hormone-responsive breast cancer due to its potency in inhibiting aromatase-catalyzed estrogen synthesis. Preliminary in vitro studies sought to identify phase I EXE metabolites and hepatic cytochrome P450s (CYP450s) that participate in EXE biotransformation. Phase I metabolites were identified by incubating EXE with HEK293-overexpressed CYP450s. CYP450s 1A2, 2C8, 2C9, 2C19, 2D6, 3A4, and 3A5 produce 17β-dihydroexemestane (17β-DHE), an active major metabolite, as well as two inactive metabolites. 17β-DHE formation in pooled human liver microsomes subjected to isoform-specific CYP450 inhibition was also monitored using tandem mass spectrometry. 17β-DHE production in human liver microsomes was unaffected by isoform-specific inhibition of CYP450s 2A6, 2B6, and 2E1 but decreased 12-39% following inhibition of drug-metabolizing enzymes from CYP450 subfamilies 1A, 2C, 2D, and 3A. These results suggest that redundancy exists in the EXE metabolic pathway with multiple hepatic CYP450s catalyzing 17β-DHE formation in vitro. To further expand the knowledge of phase I EXE metabolism, the impact of CYP450 genetic variation on 17β-DHE formation was assessed via enzyme kinetic parameters. Affinity for EXE substrate and enzyme catalytic velocity were calculated for hepatic wild-type CYP450s and their common nonsynonymous variants by monitoring the reduction of EXE to 17β-DHE. Several functional polymorphisms in xenobiotic-metabolizing CYP450s 1A2, 2C8, 2C9, and 2D6 resulted in deviant enzymatic activity relative to wild-type enzyme. Thus, it is possible that functional polymorphisms in EXE-metabolizing CYP450s contribute to inter-individual variability in patient outcomes by mediating overall exposure to the drug and its active metabolite, 17β-DHE.
منابع مشابه
Exemestane potency is unchanged by common nonsynonymous polymorphisms in CYP19A1: results of a novel anti‐aromatase activity assay examining exemestane and its derivatives
Exemestane (EXE) treats estrogen receptor positive (ER+) breast cancer in postmenopausal women by inhibiting the estrogen-synthesizing cytochrome P450 CYP19A1. Variability in the severity and incidence of side effects as well as overall drug efficacy may be partially explained by genetic factors, including nonsynonymous variation in CYP19A1, also known as aromatase. The present study identified...
متن کاملValidation of a Rapid and Sensitive LC-MS/MS Method for Determination of Exemestane and Its Metabolites, 17β-Hydroxyexemestane and 17β-Hydroxyexemestane-17-O-β-D-Glucuronide: Application to Human Pharmacokinetics Study
A novel, rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the evaluation of exemestane pharmacokinetics and its metabolites, 17β-dihydroexemestane (active metabolite) and 17β-dihydroexemestane-17-O-β-D-glucuronide (inactive metabolite) in human plasma. Their respective D3 isotopes were used as internal standards. Chromatograph...
متن کاملIn vitro cytochrome P450-mediated metabolism of exemestane.
Exemestane is a potent and irreversible steroidal aromatase inhibitor drug used for the treatment of estrogen receptor-positive breast cancer. Our aim was to identify and assess the contribution of the specific cytochromes P450 (P450s) responsible for exemestane primary in vitro metabolism. With the use of high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry...
متن کاملSelective metabolism of vincristine in vitro by CYP3A5.
Clinical outcomes of vincristine therapy, both neurotoxicity and efficacy, are unpredictable, and the reported pharmacokinetics of vincristine have considerable interindividual variability. In vitro and in vivo data support a dominant role for CYP3A enzymes in the elimination of vincristine. Consequently, genetic polymorphisms in cytochrome P450 (P450) expression may contribute to the interindi...
متن کاملIn Vitro P450-Mediated Metabolism of Exemestane
Exemestane is a potent and irreversible steroidal aromatase inhibitor drug used for the treatment of estrogen receptor-positive breast cancer. Our aim was to identify and assess the contribution of the specific P450s responsible for exemestane primary in vitro metabolism. Using HPLC and LC-MS/MS analytical techniques, 17-hydroexemestane (MI) and 6-hydroxymethylexemestane (MII) formation were fo...
متن کامل